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Abstract: In this study, the symplectic method is applied to a two-dimensional annular-sector viscoelastic domain under 
the polar coordinate system. By applying variable separation approach, all fundamental solutions are derived in analytical 
form. Furthermore, using the method of variable substitution, lateral conditions are transformed into finding a particular 
solution for the governing equations, and this particular solution is derived with the use of eigensolution expansion. In the 
numerical example, the boundary condition problem is discussed in detail to analyze the stress response of viscoelastic 
solids. 
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1. INTRODUCTION 

 Analysis of viscoelastic materials is proved to be more 
complex than elastic ones since viscoelastic materials show 
elastic and viscous response simultaneously, when external 
forces are loaded [1]. In recent years, the research in 
viscoelasticity has become an important topic, and a large 
sum of reports can be found in literature [2, 3]. It is well 
known that the stress-strain relation of this kind of materials 
is time-dependent, and therefore various numerical 
computational methods are inevitably taken into account in 
these research reports, especially the widely used finite 
element method. Using this approach, Khan and Muliana 
studied the thermal and mechanical effects, and presented a 
numerical approach to analyze coupled thermo-visco-elastic 
responses [4]. In Cao and Chen’s work [5], a theoretical 
analysis based on the finite element is investigated for 
solving engineering problems related with viscoelastic 
composite. The boundary element is another important 
approach in viscoelastic computations. By constructing a 
time formulation with the use of the reciprocity theory, 
Cezario et al. derived a set of concise general solutions for 
plane viscoelastic problems [6]. Moreover, Zéhil and Gavin 
analyzed three-dimensional problems, and proposed a new 
boundary element for incompressible viscoelastic layers [7]. 
Obviously, the boundary element approach provides an 
attractive idea since the dimension of the problem can be 
reduced [6]. 
 On the other hand, the symplectic mechanics based on 
Hamiltonian formulation provide an alternative and efficient 
way for solving solid and fluid mechanics including 
viscoelastic problems [8]. In contrast to the well-known 
semi-inverse method, the symplectic approach takes dual 
variables (displacement and stress components) as the basic 
variables, and hence the difficulty for solving high order  
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differential equations in the traditional methods is bypassed. 
Unlike the above traditional methods, the dual variables 
(displacement and stress components) are selected as 
fundamental variables in the symplectic system, and 
accordingly the order of partial differential equations is 
reduced. During the past two decades, the symplectic method 
has been introduced into various fields of engineering 
applications successfully. In elasticity, a great amount of 
symplectic techniques can be found in literature including 
the work on free vibration, thin plate bending, and circular 
cylindrical problems [9-11]. Moreover, the symplectic 
elasticity approach has been recently extended to problems 
with complex material properties and structures. Xu et al. 
presented an analytical solution for three-dimensional 
transversely isotropic piezoelectric media in Hamiltonian form 
[12]. Li and Yao (2011) derived a general solution for two-
dimensional magnetoelectroelastic solids [13]. Regarding 
viscoelastic materials, the symplectic method cannot be used 
directly due to the existence of the energy dissipation. Using 
the integral transformation, however, the original problem is 
described as energy conservative one, and thus the 
symplectic method can be applied. 
 In this paper, the quasi-static viscoelastic problem in an 
annular-sector domain is analyzed under the symplectic 
system. By employing the variable separation approach, all 
general solutions is analytically obtained in terms of polar 
coordinates. Since the eigenvectors has the character of 
concise analytical form, one can easily get the corresponding 
time domain expressions. Compared with the traditional 
symplectic methods, the proposed approach is very 
convenient for viscoelastic problems with annular-sector 
domain, especially for those with viscoelastic crack. As an 
illustration, we discussed a typical boundary condition 
problem in the numerical example, and the corresponding 
stress distribution is presented to verify the proposed 
symplectic model and also to show local effects near the 
ends of the annular-sector domain. 
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2.THE FUNDAMENTAL PROBLEM IN THE 
SYMPLECTIC SYSTEM 

 As Fig. (1) shows, the polar coordinate (r,! )  is selected 
to consider a plain annular-sector domain 
(a ! r ! b, "# !$ !# ) , where r-axis is in the direction of 
the radius of the sector, and the origin is located at the center 
point. The Cartesian coordinates (x, y)  are used as a 
referential system. 

 
Fig. (1). The sketch map of the annular-sector in the polar 
coordinates. 

 The material is supposed to be time-dependent linear 
viscoelastic solid. Its constitutive relation can be described 
through integral equation [14]: 
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where ! ij  and ! ij  are stress and strain components, ! kk  is 
the volumetric strain, and µ(t)  and !(t)  are relaxation 
moduli. The corresponding Laplace domain description of 
Eq. (1) is: 

! ij = " (s)# kk (s)$ ij + 2µ(s)# ij (s)  (2) 

in which an over bar on a modulus represents the Laplace 
transformation, and s is the complex-valued transform 
parameter. In general, the shear modulus can be expressed by 
a micro-model including parallel spring-dashpots (Fig. 2). 
The model leads to: 
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where pi = µi /!i . The Laplace transform of Eq. (3) is: 
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Fig. (2). The viscoelastic model. 

 Generally, the Poisson’s ratio!  is also time-dependent, 
but compared with other moduli, the dependence is much 
weaker. In this paper, we consider the Poisson’s ratio as a 
constant modulus. 
 Without considering body forces, the Lagrange function 
can be described as: 

L = r
2
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 In the polar coordinate system, the symplectic method 
can also be applied. However, a new axis, ! = ln r , must be 
introduced. Under the new coordinates (!," ) , the total 
potential energy is expressed by displacement variables as: 
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where a dot over a variable donates the differentiation with 
respect to ! . From minimum potential energy principle, we 
have 

! " = 0  (7) 

 For the convenience of discussion, we introduce the 
displacements vector and its dual vector: 
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 For energy conservative problems, the variational method 
can be applied. Using Eq. (7), we have the dual equations in 
the Hamiltonian system: 
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 For brevity, Eq. (9) is simplified as: 

! = H!  (10) 

 The other stress component is: 

S! = r"! = 2(1+#)µ u + $v
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%
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3. FUNDAMENTAL SOLUTIONS 

 Suppose the lateral boundary is displacement free, that is: 

!" =! r" = 0 (" = ±# )  (11) 

 Using the variable separation approach, we can assume 
the final solution 

!(",# ) =$ (" )Y(# )  (12) 

in which ! (" ) = e#" , and Y(! )  satisfy 

HY(! ) ="Y(! )  (13) 

where !  is an eigenvalue, and Y is its corresponding 
eigenvector: 
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 The characteristic equation of Eq. (13) is: 
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3.1. The Case of ! " 0  

 Four different characteristic values can be found from 
Eq. (15), and therefore we describe the general solution as: 
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 Because solution (16) must satisfy the lateral boundary 
condition (11), the constants cjk  are dependent. As a result, 
only four constants are independent, and accordingly the 
solutions can be rewritten as: 
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where !11 = !12 = !13 = !14 = "!21 = !23 = 1 , !22 = "!24 = (#  
!" !"# ! 3) / (3!# !" !"#) , !31 = !33 = "!41 = !43 = 2µ# , 
!32 = !34 = "2µ# (1+$)(3"# ) / (3"$ "# "#$) ,
!42 = "!44 = "2µ# (1+$)(1"# ) / (3"$ "# "#$) . The two 
terms in the right of Eq. (17) represent solutions for 

symmetrical problems and anti-symmetrical ones 
respectively. To determine the eigenvalues, substituting the 
solutions (17) into Eq. (11), we get: 
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for the symmetric solutions, and 
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for the anti-symmetric ones. Due to the existence of non-zero 
eigenvectors, the coefficient determinants of Eqs. (18) and 
(19) must be zeros. Accordingly, the eigenvalue equations 
can be established. 

3.2. The Case of ! = 0  

 Solutions for this case are usually called zero 
eigenvectors. The governing equation is: 

HY(! ) = 0  (20) 

 By solving Eq. (20) directly, we get two fundamental 
solutions: 
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 Their geometrical meanings are rigid translations in x and 
y directions, respectively. Besides Eqs. (21) and (22), there 
are corresponding Jordan form solutions. The governing 
equation is: 

HYn
( j ) =Yn
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 Two Jordan form solutions can be found according to Eq. 
(23): 
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 They are the solutions of concentrated forces at the origin 
along the vertical and horizontal directions, respectively. It 
can be proved that there exist no other Jordan form solutions. 
Since the eigenvectors has the character of concise analytical 
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form, one can easily get the corresponding time domain 
expressions with the use of the inverse integral transform. 

4. LATERAL BOUNDARY CONDITIONS 

 The above mentioned fundamental solutions are derived 
under the condition that the lateral boundary is in 
homogeneous form. For non-homogeneous cases, we can 
transform the non-homogeneous conditions into 
homogeneous ones simply by using the method of variable 
substitution. As an example, we suppose: 

S! = S"
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 Eq. (26) can be expressed by the fundamental variables 
of the symplectic system as: 
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 Boundary conditions (27) can be expressed in 
homogeneous form under new variables: 
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One can verify that boundary conditions (27) are 
transformed into homogeneous ones. Yet the dual equation 
(13) becomes non-homogeneous: 

!" = H !" + !h  (29) 

where the non-homogeneous term can be obtained by Eq. 
(13): 

!h = H !!" # "!!  (30) 

 Therefore, the lateral boundary condition problem is 
reduced by finding a particular solution of governing 
equations. 
 In fact, the complete solution includes a certain 
combination of general solutions and a particular solution. 

5. NUMERICAL ANALYSIS 

 As an application of the symplectic method, numerical 
examples are given here. In this section, the first three terms 
of the relaxation modulus (4) are used. The viscoelastic 
parameters of the solid are given as: µ1=µ2=5µ! ,
!1 =!2 =! , and ! = 0.3 . The geometrical models shown in 
Fig. (1) are selected as: b = 2a , and ! = " /12 . As Fig. (3) 
shows, the boundary conditions are: 

u = v = 0 (r = a)
! r =! r" = 0 (r = b)
!" = P, ! r" = 0 (" = ±# )

 (31) 

O

P

P
 

Fig. (3). The geometrical model. 

 

Fig. (4). Stress !" / P  distribution. 

 Based on the symplectic theory of this research, we 
firstly transform the non-homogeneous conditions (! = ±" )  
into homogeneous form using the method of variable 
substitution. Then, considering circular boundary conditions 
(r = a,b) , we established linear equations about the 
coefficients of the eigenvector. Thus, the components of ! r , 
!"  and ! r"  are obtained numerically. According to the 
results, !"  plays the most important role among the stress, 
and its distribution is given in Fig. (4). It is clear that stress 
concentrations appear near the clamped boundary due to the 
displacement constraints, and the concentration effect 
attenuates dramatically with the radial direction. The results 
of the example well agree with the famous Saint-Venant 
principle about boundary effects. 

CONCLUSION 

 The polar coordinate symplectic method is applied for 
viscoelastic materials in the Laplace domain, and all the 
general eigensolutions are derived analytically. With the use 
of the adjoint symplectic relations, solutions of various 
boundary condition problems are conveniently obtained by 
combinations of the fundamental eigensolutions. Numerical 
examples show that stress concentrations effects decrease at 
rapid speed with the distance from the clamped boundary. 
Compared with the traditional symplectic methods, the 
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proposed approach is more suitable for engineering 
computations of solids and structures in annular-sector 
domains, and further researches of elastic or viscoelastic 
cracks are highly expected due to the use of the polar 
coordinate system. 
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