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Abstract: The dislocation widths, Peierls barriers and Peierls stresses for shuffle screw dislocations in diamond structure 
crystals, Si and Ge, have been calculated by the improved P-N theory. The widths are about 0.6b, where b is the Burgers 
vector. The Peierls barrier for shuffle screw dislocation in Si and Ge, is about 3.61~4.61meV/Å and 5.31~13.32meV/Å, 
respectively. The Peierls stress is about 0.28~0.33GPa and 0.31~0.53GPa, respectively. The calculated Peierls barriers 
and stresses are likely the results of shuffle screw dislocation with metastable core which is centered on the bond between 
two atoms. 
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1. INTRODUCTION 

The mechanical properties of Si and Ge have been widely 
investigated due to their importance in the electronic indus-
try. The plasticity of crystal materials is closely related to the 
dynamic properties of dislocations. The dislocations in dia-
mond structure crystals Si and Ge can be present in the glide 
set or shuffle set configurations and the glide dislocation will 
dissociate into a pair of partial dislocations separated by an 
intrinsic stacking fault [1]. In experiments, Rabier and De-
menet have showed that high external pressures on Si favor a 
pure shuffle dislocation popular over the partialized glide 
dislocation [2]. In order to make better use of semiconduc-
tors Si and Ge, studying the structure and motion of shuffle 
dislocation is important. Several attempts have been made to 
determine the Peierls stress of the shuffle 60O dislocations. 
However, the screw dislocation has been less studied. Ab 
initio calculations carried out by Cai et al. predicted the Pei-
erls stress at zero pressure for Si to be 3.3 ± 0.2GPa [3]. 
Density functional theory carried out by Pizzagalli et al. 
gives the result 4.1±0.3GPa [4]. 

Besides the numerical methods, the analytical P-N theory 
[1, 5, 6] is generally used for studying the structure and mo-
tion properties of dislocations. However, because of treating 
the crystal as an elastic continuum body, the classical P-N 
model becomes increasingly inaccurate for narrow disloca-
tions [5, 7, 8]. Recently, professor Wang have obtained the 
improved P-N equation which has relaxed the continuum 
approximation successfully [9-11]. The research results have 
shown that the improved P-N theory can remarkably im-
prove the agreement between theoretical prediction and the 
numerical result [12, 13]. 
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In this paper, the core structure, Peierls barrier and Pei-
erls stress for shuffle screw dislocations in Si and Ge have 
been studied by the improved P-N theory. An overview of 
this paper is as follows: Sec 1, Introduction; Sec 2, Disloca-
tion equation, core structure, Peierls barrier and Peierls 
stress; Sec 3 is the result and discussion. The last section 4 is 
the conclusion. 

2. DISLOCATION EQUATION, CORE STRUCTURE, 
PEIERLS BARRIER AND PEIERLS STRESS 

Based on the lattice dynamics and the symmetry princi-
ple, the improved P-N equation for the straight dislocation 
that describes the balance of atoms on the border can be ex-
pressed as: 
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where u is the displacement field, f(u) is the restoring 
force, and they are defined along the Burgers vector. σ is the 
area of primitive cell in the misfit plane. The discrete param-
eter β and energy factor K can be represented as [1,14]: 
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Where θ  is the dislocation angel, µ andν are the effec-
tive shear modulus and Poisson’s ratio within {111} plane 
[1,5], 11c  and 12c are the elastic constants, and 0a is the lattice 
constant. The values for these constants are listed in Table 1. 
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Table 1.  The effective shear modulus and Poisson’s ratio µ  and ν  within {111} plane, elastic constants
11c and 

12c , and the lattice 

constant
0a for Si and Ge, where µ , 

11c and 
11c are in units of GPa, 

0a  in unit of Å. 

 µ  ν  
11c  

12c  
0a  

Si 63.75 0.256 165.7 63.9 5.43 

Ge 52.00 0.248 128.9 48.3 5.65 

 
Table 2.  The modification factors Δ1 and Δ2. SW and Baskes represent the γ -surface that has been calculated by Stillinger-Weber 

and MEAM-Baskes inter-atomic potential, respectively; LDA and GGA represent the γ -surface that has been calculated 
by Vienna ab initio simulation package (VASP) with the local density approximation and the generalized gradient approx-
imation, respectively. 

 Si  Ge  

  Δ1  Δ2  Δ1  Δ2 

SW -0.82 0.315 -0.40 0.26 

Baskes -0.10 -0.16 0.12 -0.38 

LDA -1.00 0.76 -1.10 0.84 

GGA -0.90 0.68 -1.20 0.90 

 
The restoring force f(u) in Eq.(1) is given by the gradient 

of the γ -surface [15] 

(u)f γ σ= −∇  

The γ -surface of shuffle set for Si and Ge has been calcu-
lated by Kang and Cai [16], and it can be expressed as fol-
lows [17]: 
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where b and d are the Burgers vector and the spacing be-
tween glide planes, respectively. 1Δ and 2Δ are the modifica-
tion factors to the sinusoidal-force law. For fitting the γ -
surface given in Ref. [16], 1Δ and 2Δ have been listed in Ta-
ble 2. The γ -surface and the fitted curve have been plotted 
in Fig. (1).  

The dislocation Eq.(1) can be solved by truncating meth-
od proposed by professor Wang and the trial solution pos-
sesses the following form [14, 18] 
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where the parameter c is a constant that can be deter-
mined by the dislocation equation. 

 

 
Fig. (1). The γ -surface along <110> direction of shuffle set for Si 
and Ge given by Kang et al. [16] and fitted by Eq. (3), where the 
Burgers vectors for Si and Ge are 3.84Å and 4.00Å, respectively. 
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Table 3.  The core parameter c and half width ξ . c0 and ξ0 are given by the classical P-N model.  

 Potential c0 c ξ0(b)  ξ(b)  

 SW 0.85 0.88 0.99 1.21 

Si Baskes 0.62 0.76 0.46 0.66 

 LDA 0.48 0.73 0.38 0.60 

 GGA 0.46 0.72 0.37 0.58 

 SW 0.39 0.69 0.35 0.54 

Ge Baskes 0.63 0.76 0.47 0.66 

 LDA 0.50 0.74 0.38 0.62 

 GGA 0.57 0.76 0.42 0.66 

 
Substituting the solution Eq.(4) into dislocation equation 

and after complicated calculations, an algebraic equation 
about parameter c can be obtained as follows: 
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It recovers the classical P-N model when the discrete pa-
rameter β equals to zero. 

The core parameter c calculated from Eq.(6) and half 
width (the distance that u changes from 0 to b/4) are listed in 
Table 3. 

In the classical P-N theory, the Peierls barrier and stress 
are obtained by calculating misfit energy only. However, it 
has been shown that the contributions of strain energy and 
misfit energy are equally important [19]. The total energy 
which includes the contribution of misfit and strain energies 
should be evaluated to obtain the correct Peierls barrier and 
Peierls stress. For a dislocation with length L, the strain and 
misfit energies of dislocation per unit length are given by 
[14]. 
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where u1 = u(x1 ! x0 )  is the relative displacement for dis-
location located at 0x , a is the length of the primitive vector 
(period in the direction of dislocation line). Just as shown in 
Fig. (2), sum is carried over the atoms located in the horizon-
tal band in the misfit plane (the band width is a). According 
to Eq.(7) and Eq.(8), the total energy is: 
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Due to discreteness of lattice, a dislocation cannot move 
unless the applied stress exceeds the Peierls stress. The Pei-

erls stress can be obtained from the maximum slope of the 
total energy: 
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Fig. (2). Core structure of the shuffle screw dislocation. The black 
and white circles represent the atoms on the misfit planes that above 
and below the cut plane, respectively. 

The calculated Peierls barriers and Peierls stresses are 
listed in Table 4. 

3. RESULT AND DISCUSSION 

The width of dislocation is mainly related to the unstable 
stacking fault energy. The higher the unstable stacking fault 
energy, the narrower the dislocation is. The widths of shuffle 
screw dislocations in Si and Ge are about 0.6b. The Peierls 
barriers and Peierls stresses calculated from SW potential are 
much lower than those calculated from three other potentials. 
Besides, the results given by classical P-N theory calculated 
from Baskes potential are much lower than those calculated 
from LDA and GGA potentials. Thus, the results calculated 
from LDA and GGA potentials are thought to be more relia-
ble. The Peierls barrier for shuffle screw dislocation in Si 
and Ge is 3.61~4.61meV/Å and 5.31~13.32meV/Å, respec-
tively. Peierls stress is 0.28~0.33GPa and 0.31~0.53GPa, 
respectively. The calculated Peierls stress for Si is about one 
magnitude lower than the numerical results given in [3, 4]. 
The research on shuffle screw dislocation in Si shows that 
there exist two different core structures: core A is centered in 
the 6-member ring of atoms [20], core B is centered on the 
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Table 4.  The Peierls barrier (meV/Å) and Peierls stress (meV/Å3) for shuffle screw dislocation. Ep(0) and σp(0) are given by classical 
P-N model. 

 Potential Ep(0) Ep σp(0) σp 

 SW 2.19 1.45 0.54 0.36 

Si Baskes 13.85 6.52 4.13 1.65 

 LDA 134.69 3.61 36.80 1.73 

 GGA 137.72 4.61 37.35 2.07 

 SW 128.55 9.16 30.13 2.09 

Ge Baskes 9.70 10.13 3.47 2.40 

 LDA 99.86 5.31 29.57 1.93 

 GGA 100.50 13.32 24.90 3.29 

 
bond between two atoms [21]. Recent ab initio calculations 
show that core A is the ground state of a perfect screw dislo-
cation, while core B is metastable, with an energy 0.38 eV/b 
higher than that of core A [3]. The Peierls barriers and Pei-
erls stresses given in this paper are likely the results of meta-
stable screw dislocations.  

CONCLUSION 

The core structures, Peierls barriers and Peierls stresses 
for shuffle screw dislocations in semiconductors Si and Ge, 
have been investigated. Our results indicate that the results 
calculated from LDA and GGA potentials are more reliable. 
The Peierls barrier for shuffle screw dislocation in Si and 
Ge, is about 3.61~4.61 meV/Å and 5.31~13.32 meV/Å, re-
spectively. Peierls stress is 0.28~0.33 GPa and 0.31~0.53 
GPa, respectively. The calculated Peierls barriers and Peierls 
stresses are likely the results of dislocations with metastable 
core which is centered on the bond between two atoms. Fur-
ther studies will be carried out to better understand the me-
chanical properties of shuffle screw dislocation with differ-
ent core structures. 
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