NOMENCLATURE

Issues on the Surface Integrity of Case Hardened Steel Materials

А	=	Furnace Temperature in degree Celsius
AISI	=	American Iron and Steel Institute
ANOVA	=	Analysis of Variance
В	=	Quenching time in minutes
С	=	Tempering temperature in degree Celsius
CA _{opt}	=	Case depth value obtained at optimum process variable A
CB _{opt}	=	Case depth value obtained at optimum process variable B
CC _{opt}	=	Case depth value obtained at optimum process variable C
CD _{opt}	=	Case depth value obtained at optimum process variable D
CEopt	=	Case depth value obtained at optimum process variable E
C.F	=	Correction factor
D	=	Tempering time in minutes
Е	=	Preheating temperature in degree Celsius
EN	=	European Standards published by the European Committee for Standardization
fm	=	Volume fraction of martensite
G1	=	Group 1
G2	=	Group 2
HA _{opt}	=	Hardness value obtained at optimum process variable A
HBopt	=	Hardness value obtained at optimum process variable B
HC _{opt}	=	Hardness value obtained at optimum process variable C
HD _{opt}	=	Hardness value obtained at optimum process variable D
HE _{opt}	=	Hardness value obtained at optimum process variable E
HRA	=	Rockwell Hardness A scale
HRC	=	Rockwell Hardness C scale
LA _{opt}	=	Helix variation (Left) value obtained at optimum process variable A
LB _{opt}	=	Helix variation (Left) value obtained at optimum process variable B
LCopt	=	Helix variation (Left) value obtained at optimum process variable C
LD _{opt}	=	Helix variation (Left) value obtained at optimum process variable D
LE _{opt}	=	Helix variation (Left) value obtained at optimum process variable E
Ms	=	Starting temperature of marteniste formation
M_{f}	=	Temperature of martensite transformation ends
Ν	=	Number of levels
Р	=	Power potential in kW/inch ²
Q	=	Quench flow rate litres/minutes
r	=	Number of replicates
RA _{opt}	=	Runout value obtained at optimum process variable A

Nomenclature

RB _{opt}	=	Runout value obtained at optimum process variable B
RC _{opt}	=	Runout value obtained at optimum process variable C
RD _{opt}	=	Runout value obtained at optimum process variable D
RE _{opt}	=	Runout value obtained at optimum process variable E
S	=	Scan speed in meter/minutes
SSE	=	Sum of Squares of Error
SST	=	Total sum of squares
SST _r	=	Sum of Squares of Treatment with replicates
SSA	=	Sum of Squares of Variables
Tq	=	Quenchant temperature at which fraction of martensite is formed
TTT	=	Temperature-Time-Transformation diagram
VHN	=	Vickers Hardness Number
β	=	Predicted mean response

N. Alagumurthi

(Guest Editor) Department of Mechanical Engineering Pondicherry Engineering College Pondicherry-605014, India E-mail: alagumurthi@pec.edu

[©] N. Alagumurthi; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/ 3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.