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Abstract:

Objective:

Cinnamic  acid  and  its  derivatives  have  a  numerous  potential  applications  in  many  different  fields  such  as  pharmacy,  organic
“building blocks”, and corrosion inhibitors.

Method:

It  is  well-known  that  Verley-Doebner  modification  is  a  high  efficient  method  for  the  preparation  of  cinnamic  acid  derivaties,
especially with the compounds containing electron-donating subtituents at para position in aromatic ring. In this paper, 4-ethoxy-
cinnamic acid was synthesized according to Verley-Doebner reaction with the use of pyrine acting as catalyst and solvent. The effect
of the β-alanine concentration on the conversion of the starting material of 4-ethoxy-benzaldehyde was thoroughly investigated using
high performance liquid chromatography. The results showed that consuming of 8% of β-alanine would convert 100% of 4-ethoxy-
benzaldehyde to 4-ethoxy-cinnamic acid.

Result:

The structure of the obtained 4-ethoxy-cinnamic acid was also confirmed using Fourier transform infrared spectroscopy, Raman
spectroscopy, and Gas chromatography-Mass spectroscopy.

Cinnamic acid and its derivatives have numerous potential applications in many different fields such as pharmacy, organic “building
blocks”, and corrosion inhibitors. It is well-known that Verley-Doebner modification is a high efficient method for the preparation of
cinnamic acid derivaties, especially with the compounds containing electron-donating subtituents at para position in aromatic ring. In
this paper, 4-ethoxy-cinnamic acid was synthesized according to Verley-Doebner reaction with the use of pyrine acting as catalyst
and solvent.  The effect  of  the  β-alanine concentration on the conversion of  the  starting material  of  4-ethoxy-benzaldehyde was
thoroughly investigated using high performance liquid chromatography. The results showed that consuming 8% of β-alanine would
convert 100% of 4-ethoxy-benzaldehyde to 4-ethoxy-cinnamic acid. The structure of the obtained 4-ethoxy-cinnamic acid was also
confirmed using Fourier transform infrared spectroscopy, Raman spectroscopy, and Gas chromatography-Mass spectroscopy.

Keywords:  4-Ethoxy-cinnamic  acid,  Verley-Doedner  modification,  Corrosion  inhibitor,  Cinnamic  acid,  β-Alanine,  Raman
spectroscopy.

1. INTRODUCTION

Cinnamic acid is an anti-bacteria and anti-mould organic compound which has been widely used in cosmetic and
food industries. In particular, its derivatives are also the vital source of pharmaceutical products which can be applied in
the high pressure treatment and tumor inhibition [1‒4]. Beside the application in pharmaceutical field, cinnanic acid and
its derivatives  have  been  also  used  as  “building  blocks” for  the  synthesis  of  photo-sensitive  polymers  due to  the
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corrosion inhibitors [5 - 15].

The  preparation  of  cinnamic  acid  was  pioneered  by  the  work  of  Perkin’  group  which  is  well-known  as  Perkin
reaction  [16].  In  this  reaction,  benzaldehyde  reacted  with  malonic  anhydride  in  the  presence  of  sodium  acetate  or
potasium acetate as catalyst. In order to obtain a rather good conversion of benzadehyde, long reaction time (8 h) and
high  temperature  (180  °C)  should  be  applied  [16].  This  reaction  is  unsuitable  for  the  synthesis  of  cinnamic  acid
derivatives with electron-donating substituents in the aromatic ring. For example, the yields of 4-methoxy-cinnamic
acid and 4-ethoxy-cinnamic acid were 30% and 36%, respectively. In order to obtain relatively good yields of cinnamic
acid  derivaties  with  electron-donating  subtituents  at  the  para  position  in  the  aromatic  ring,  many  literatures  have
focused  on  the  Knoevenagel  modification  using  malonate  ester,  malonic  acid  or  acetic  acid  insteads  of  malonic
anhydride [17‒24]. Different types of catalysts including acidic and basic catalysts were used in this approach, which
showed a prospective potential for the synthesis of many types of cinnamic acid derivaties, especially compounds with
the  electron-donating  subtituents  at  para  position  in  the  aromatic  ring.  For  intance,  when  carrying  out  the  reation
between 4-methoxy-benzaldehyde with acetic acid in the solvent of N-methyl-2-pyrrolidone using boron-based catalysts
(NaBH4, BBr3, or LiB4O7) [17‒19] at 180-190 °C for 12 hours, the yield of 4-methoxy-cinnamic acid was in the range of
53‒64%. In other literatures, microwave was applied instead of tradditional heating, which reduced the reaction time to
several  minutes  and  yielded  high  percentage  of  4-methoxy-cinnamic  acid  [20‒24].  Recently,  Verley-Doebner
modification  with  the  use  of  malonic  acid  and  β-alanine  as  co-catalyst  in  the  presence  of  pyridine  showed  a  great
potential for the preparation of a wide range of cinnamic acid derivatives [25‒29]. In this article, we also used Verley-
Doebner modification for the preparation of 4-ethoxy-cinnamic acid with thoroughly investigation of the effect of β-
alanine concentration on the conversion of 4-ethoxy-benzaldehyde which has not yet been mentioned in the literature.
In addition, with the proposed experiment procedure, the yield of 4-ethoxy-cinnamic acid was high (>98.2%) with the
short reaction time.

2. MATERIAL AND METHODS

2.1. Material

4-Ethoxy-benzaldehyde,  malonic  acid,  β-alanine,  and  pyridine  were  purchased  from Sigma-Aldrich,  Singapore.
Concentrated HCl, ethanol were supplied by Xilong Chemical, China. Acetonitrile at HPLC grade was provided by
Scharlab, Spain.

2.2. Preparation of 4-Ethoxy-cinnamic Acid

The experiment was set up followed the Scheme. (1) in which all of the reactions were carried out under nitrogen
atmosphere. A typical reaction (Scheme. 2),  Run 1 of Table 1  was described as follows. To a 100 mL of two neck
round-bottom flask were added 1853 mg of malonic acid (17.8 mmol) and 51.3 mg of β-alanine (0.58 mmol). The solid
mixture was then kept for overnight under reduced pressure using vacuum pump. The vacuum atmosphere was then
switched to nitrogen atmosphere thoroughly with at least three cycles of vacuuming and purging nitrogen. To the above
solid mixture were added 1.00 mL of 4-ethoxy-benzaldehyde (7.20 mmol) and 3.20 mL of pyridine (39.7 mmol) under
nitrogen atmosphere. The reaction mixture was then heated to the reflux condition (120 °C) using oil bath and hotplate.
During reaction period, samples were taken for high performance liquid chromatography measurements at 0, 1, 2, 3, 4,
5, 7, 10, 15, and 30 mins for investigating conversion of 4-ethoxy-benzaldehyde. Reaction was stopped at 30 min and
the reaction mixture was then cooled to room temperature. 5 mL of concentrated HCl was then slowly added to the
mixture which was placed in ice water. The precipitated white crystals were filtered, washed with cold water and dried
under vacuum for overnight (98.2% yield).  For analysis,  white crystals were recrystallized twice using ethanol and
water.

Table 1. Experimental Condition for the Preparation of 4-Ethoxy-Cinnamic Acid and 4-Propoxy-Cinnamic Acid.

Run 4-Ethoxy-Benzadehyde
/ Mol

Malonic Acid
/ Molar

Pyridine
/ Molar

β-Alanine
a

/ %
1 7.20 17.8 39.7 8
2 7.20 17.8 39.7 4
3 7.20 17.8 39.7 2

a % β-alanine = (molar of β-alanine/ molar of 4-ethoxy or propoxy-benzadehyde)*100%
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Scheme. (1). Experimental set up.

Scheme. (2). Preparation of 4-ethoxy-cinnamic acid.

2.3.  Investigation  on  the  Conversion  of  4-Ethoxy-Benzaldehyde  Using  High  Performance  Liquid
Chromatography

The  conversion  of  4-ethoxy-benzaldehyde  was  investigated  using  High  Performance  Liquid  Chromatography
(HPLC) measurements at different reaction times of 0, 1, 2, 3, 4, 5, 7, 10, 15 and 30 mins. 10 μL of samples at a certain
time were diluted with 1 mL of ethanol. The mixtures were then applied for HPLC analysis with the mobile phase of the
acetonitrile/water mixture (60/40 v/v), flow rate of 1 mL/min, C18 column, 1 μL of injected volume, and UV detector at
254 nm. The peaks appear at 2.39 min in the spectra of HPLC corresponding to 4-ethoxy-benzadehyde. The conversion
of 4-ethoxy-benzadehyde was calculated using the following equation:

(1)

Where Convethoxy: Conversion of 4-ethoxy-benzadehyde; A
2.39

 and A
t

2.39
: peak areas of 4-ethoxy-benzadehyde at 0 and t

min, respectively.

2.4. Measurements

Fourier Transform Infrared Spectroscopy (FT‒IR) was measured under KBr pellets using Bruker’s VERTEX 70 at a
resolution  of  2  cm-1.  Raman  measurements  were  carried  out  using  Horiba  XploRA  laser  785  nm.  Gas
chromatography‒Mass spectroscopy (GC‒MS) was carried out using Agilent 7890B for GC and Agilent 5977A for MS
with the mobile phase at 1 mL/min of flow rate.

3. RESULTS AND DISCUSSION

3.1. Effect of β-Alanine Concentration on the Conversion of 4-Ethoxy-Benzaldehyde

In this paper, the conversion of 4-ethoxy-benzadehyde was thoroughly investigated using HPLC measurements.
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HPLC profiles at different reaction conditions with different amounts of β-alanine were described in Fig. (1a, b, c). The
peaks at 1.87 min and 2.39 min correspond to the desired product of 4-ethoxy-cinnamic acid and the reactant of 4-
ethoxy-benzadehyde, respectively. In the case of using 2% of β-alanine Fig. (1a), the reactant remained at high level in
the reaction mixture even at long reaction time, indicating the used amount of β-alanine was insufficient. The amount of
β-alanine was therefore increased to 4% leading to a better result shown in Fig. (1b); however, 4-ethoxy-benzadehyde
still remained after 30 min of reaction time. In the case of using 8% of β-alanine Fig. (1c), the 4-ethoxy-benzadehyde
was completely consumed after 5 min of reaction time. The results showed in Fig. (1d) obviously demonstrated that the
amount of β-alanine affected the conversion of 4-ethoxy-benzadehyde. In particular, when using 2% of β-alanine, the
conversion of 4-ethoxy-benzadehyde was below 45% and required 30 min to reach maximum value of 42.8%. When
increasing β-alanine concentration to 4%, the conversion of 4-ethoxy-benzadehyde went up to 87.9% and required less
time (15 mins) to reach maximum value as compared with the case of using 2% β-alanine. In the case of using 8% β-
alanine, the conversion of 4-ethoxy-benzadehyde reached 100% rapidly after 5 min of reaction time.

Fig. (1). The high performance liquid chromatography spectra of reaction samples at different β-alanine concentration: a) 2% β-
alanine, b) 4% β-alanine, c) 8% β-alanine; d) Effect of β-alanine concentration on the conversion of 4-ethoxy-benzaldehyde.

3.2. Characterization of 4-Ethoxy-Cinnamic Acid

The  obtained  product  of  4-ethoxy-cinnamic  acid  was  recrystallized  twice  using  ethanol  and  water  for
characterization. The FT-IR and Raman spectra of 4-ethoxy-cinnamic acid were showed in Fig. (2) in the wavenumber
region of 3500‒2000 cm-1 Fig. (2a) and 2000‒400 cm-1 Fig. (2b) and the vibration assignments were described in Table
2 followed the literatures [30, 31].
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Fig.  (2).  FT‒IR  spectroscopy  of  4-ethoxy-cinnamic  acid  at  the  region  of  a)  3500‒400  cm-1  and  b)  2000‒200  cm-1.  Asterisks:
vibrations of carboxylic; Closed circle: C‒C virbations in phenyl; Open circle: C‒C vibrations in double bond; Open diamond: C‒H
vibrations; Closed diamond: CH2 and CH3 vibrations; Open triangle: ether vibrations

Table 2. Ft-ir and Raman Assignment for 4-Ethoxy-Cinnamic Acid.

Assignments FT-IR Raman Assignments FT-IR Raman
νC‒Η (aryl) 3037 vw - β=C‒Η 1213 vs 1208 m

γΟΗ 3200-2600 w, br - ωCH3 1174 vs 1169 vs

νC‒Η (sp3) 2974 m
2928 m
2887 m

- ρCH2 1157 m -

νC=Ο 1676 vs - βO‒Η 1117 s 1114 w
νC=C (alkene) 1622 s 1626 s νO‒CH2 1045 s 1049 w

νC‒C (aryl) 1600 vs 1597 vs γ=C‒Η (trans) 980 s 981 w
νC‒C (aryl) 1573 s 1575 m βC‒Η 942 m
νC‒C(aryl) 1510 vs γC‒Η 858 w 861 w
νC‒C (aryl) 1475 s γC‒Η (para-di-substitution) 835 s -

δCH2 1427 s 1423 m γC‒Η 802 m -
δCH3 1396 m - βC‒C‒C 785 m 782 w

νC‒OH 1335 s -
γC‒Η 743 vw

692 m
673 vw

749 vw
672 vw

νC‒COOH 1308 vs - βC‒C‒C 582 s 580 m
β=C‒Η 1285 s 1287 m γO‒Η 547 s -

νC‒O(CH2) 1248 vs 1246 m βC‒C‒C 515 m -
a  ν‒stretching; β‒in-plane bending; δ‒deformation; ρ‒rocking; γ‒out-of-plane bending; ω‒wagging. b  vw: very weak; w: Weak; m: Medium; A:
strong; vs: very strong; br: Broad.

3.2. Vibrations of Carboxylic Acid

The  broad  band  in  the  range  of  3200‒2600  cm-1  in  FT-IR  spectrum  is  characteristic  for  the  vibration  of  O‒H
stretching in carboxylic acid. Other strong peak appears at 1676 cm-1 was assigned for the C=O stretching mode. This
peak is strong in FT-IR spectrum but completely absented in Raman spectrum. The peak at 1335 cm-1 is assigned for
C‒O stretching. The C‒COOH stretching vibration was confirmed with the peak appearing very strong at 1308 cm-1 in
the  FT-IR  spectrum.  The  OH  in-plane  bending  vibration  appears  with  strong  intensity  at  1117  cm-1  in  the  FT-IR
spectrum, while OH out-of-plane bending shifted to lower wavenumber at 547 cm-1. All of the peaks corresponding to
the vibrations of carboxylic acid are marked by red asterisks in (Fig. 2).
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3.3. Vibrations of ‒C=C‒ and C‒C

The vibration of C‒C stretching in phenyl ring is obviously observed both in FT-IR and Raman spectra with the
intensity ranging from weak to very strong which are marked by closed blue circles in the Fig. (2). These peaks appear
in the region of 1650‒1100 cm-1. In FT-IR spectrum they can be seen at 1600, 1573, 1510, and 1475 cm-1, whereas at
1597,  1575  cm-1  in  Raman  spectrum.  Other  characteristic  vibration  of  C‒C  bond  in  phenyl  ring  is  CCC  in-plane-
bending,  which  appears  in  FT-IR  spectrum  at  785,  582,  and  515  cm-1.  For  C=C  stretching  in  double  bond,  the
characteristic peaks appear very strong in both FT-IR and Raman spectra; specifically at 1622 cm-1 in FT-IR spectrum
and at 1626 cm-1 in Raman spectrum, which are marked by open blue circles in the (Fig. 2a).

3.4. Vibrations of C‒H

The characteristic vibrations of C‒H in phenyl and double bond are stretching, in-plane bending and out-of-plane
bending, which are marked by open green diamonds in the Fig. (2). The stretching mode shows weak peak in FT-IR
spectrum at 3037 cm-1. The in-plane C‒H bending mode in phenyl ring appears at 942 cm-1 in FT-IR spectrum. The out-
of-plane C‒H bending vibrations in phenyl ring appear at 858, 835, 802, 743, 692, and 673 cm-1 in FT-IR spectrum and
at 861, 749, 672 cm-1 in Raman spectrum. The peak observed at 835 cm-1 is characteristic peak for the di-substituent at
para position of phenyl ring. For the vibrations of C‒H in double bond, in-plane bending and out-of-plane bending
modes were observed. Specifically, the in-plane bending mode of C‒H in double bond appears very strong at 1285 and
1213  cm-1  in  FT-IR  spectrum  and  medium  at  1246  and  1208  cm-1  in  Raman  spectrum.  Whereas,  the  out-of-plane
bending of C‒H in double bond appeared at 980 cm-1 in FT-IR spectrum and 981 cm-1 in Raman spectrum. These are
characteristic peaks for the trans isomer of 4-ethoxy-cinnamic acid.

3.5. Vibration of CH3 and CH2

The vibrations modes of CH3 and CH2 in 4-ethoxy-cinnamic acid are CH3 and CH2 deformation, CH2 rocking, and
CH3 wagging which are marked by closed green diamond in the Fig. (2). The CH2 deformation appeared strongly at
1427 cm-1 in FT-IR spectrum, whereas CH3 deformation appeared at 1396 cm-1 in FT-IR spectrum. The CH2 rocking
vibration  is  confirmed  with  the  medium  peak  at  1157  cm-1  in  FT-IR  spectrum.  The  CH3  wagging  mode  is  the
characteristic vibration of CH3  and appears strongly both in FT-IR and Raman spectra at  1174 cm-1  and 1169 cm-1,
respectively.

3.6. Vibrations of Ather

The structures of 4-ethoxy-cinnamic acid consist of ether linkages between ethoxy and phenyl, which lead to two
stretching  vibration  modes  of  νC‒OCH2  and  νO‒CH2  which  are  marked  by  open  purple  triangles  in  the  Fig.  (2).
νC‒OCH2 appears in FT-IR spectrum with high intensity at 1248 cm-1, while in Raman spectrum at 1246 cm-1. These
vibrations are also present in the Raman spectrum at 1246 cm-1. In contrast, the νO‒CH2 vibration is observed in the FT-
IR and Raman spectra at 1045 cm-1 and 1049 cm-1, respectively.

3.7. GC-MS Measurements

The structure of 4-ethoxy-cinnamic acid was further confirmed using GC‒MS measurement and the result is shown
in Fig. (3). According to literature [32], the fragmentation of cinnamic acid in the ion source should lead to positively
charged  ions;  hence  m/z  values  in  Fig.  (3)  are  equal  to  the  molecular  mass  of  corresponding  ions.  The  chemical
composition of 4-ethoxy-cinnamic acid (C11H12O3) was confirmed by checking the isotope ratios of (M+1)+ and M+ of 4-
ethoxy-cinnamic acid. The existence of (M+1)+  isotopes at m/z  = 193 in Fig. (3) is attributed to the contribution of
natural abundance of 2H, 13C or 17O isotopes to chemical molecules of 4-ethoxy-cinnamic acid. The isotope ratios of
(M+1)+ and M+ of 4-ethoxy-cinnamic acid was theoretically calculated using the below equation:

(2)

Where:

n
H
: number of H atoms in chemical molecules;

n
O
: number of O atoms in chemical molecules;

� � OOHHCC pnpnpnMM 17213/1 ������� ��
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p
13C

: natural abundance of 13C (1.08%);

p
2H
: natural abundance of 2H (0.015%); and

p
17O

: natural abundance of 17O (0.04%).

The theoretical isotope ratio of (M+1)+ and M+ for 4-ethoxy-cinnamic acid calculated from equation (2) is 12.18%.
The observed isotope ratio of 4-ethoxy-cinnamic acid was calculated based on the intensity of the peak at m/z = 193
divided by that of the peak at m/z = 192 in Fig. (3). The results show that the calculated ratio was completely matched
to  the  observed  one  for  4-ethoxy-cinnamic  acid.  Therefore,  the  chemical  composition  of  4-ethoxy-cinnamic  acid
(C11H12O3) was confirmed.

Fig. (3). GC‒MS spectrum of 4-ethoxy-cinnamic acid.

The  fragmentation  of  4-ethoxy-cinnamic  acid  was  initiated  from  the  “mother”  ions  as  showed  in  Scheme.  (3).
According to the previous literature [30], the fragmentation route should be classified via three competitive pathways: i)
cleavage of OH from carboxylic acid group (route A); ii) elimination of H in phenyl ring and ring-closing (route B) and
iii) elimination of C2H4 of ethoxy group forming 4-hydroxy-cinnamic acid ions (route C). For route A, a ion at the m/z =
175 appeared with very low intensity. The further fragmentation of this ion to b ion should result in the appearance of
the peaks at m/z = 147 in Scheme. (3). Here, the m/z at 147 in Scheme. (3) should be investigated whether it can be
assigned for b ion. The isotope ratio of (M+1)+ and M+ of b ion was calculated theoretically based on equation (2) and
compared with one obtained from the ratio of the observed intensity of the peaks at m/z = 148 and 147 in Fig. (3). The
result shows that the calculated isotope ratio based on b ion was different from the observed ratio. Therefore, the peak at
m/z = 147 should not be assigned for b ion. Actually, in route C, there is the f ion with m/z = 147 and its isotope ratio
was fitted with the observed ratio in Fig. (3). Hence, the peak at m/z = 147 in Scheme. (3) should be assigned for f ion
in route C.

For route B, the peaks at 191 corresponding to c ion and their “children” ions of d (m/z = 163) should appear in Fig.
(3);  however,  its  observed  isotope  ratio  was  not  assigned  for  d  ion.  The  fragmentation  via  Route  C  undergoes  the
elimination of C2H4 from the structures of 4-ethoxy-cinnamic acid leading to the formation of 4-hydroxy-cinnamic acid
ion. This route was strongly confirmed by the appearance of the peak at m/z = 147 in Fig. (3) with strong intensity,
which  should  be  assigned  for  f  ion.  Interestingly,  the  theoretical  isotope  ratio  of  f  ion  was  in  agreement  with  the
observed ratio calculated from the intensity of the peaks at m/z = 148 and 147 in Fig. (3). All other “children” ions
belonging Route C fragmentation appear in Fig. (3) at m/z = 147, 135, 119, 107, 91, and 77. Moreover, the GC-MS
profile of 4-ethoxy-cinnamic acid in Fig. (3) in the m/z region of 75-164 was similar to that of 4-hydroxy-cinnamic acid
which was reported in the literature [32].
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Schema. (3). Fragmentation routes of ionized 4-ethoxy-cinnamic acid.

CONCLUSION

The effect of β-analine concentration on the conversion of 4-ethoxy-benzaldehyde converting to 4-ethoxy-cinnamic
acid was obviously shown. High performance liquid chromatography was proved that it was a straight forward method
to investigate the conversion of 4-ethoxy-benzadehyde. In order to acquire 100% conversion within short reaction time,
8%  of  β-alanine  should  be  applied.  In  this  article,  the  structure  of  the  obtained  4-ethoxy-cinnamic  acid  was  also
confirmed thoroughly using Fourier transform-Infrared Spectroscopy, Raman spectroscopy, and Gas chromatography-
Mass Spectroscopy.  It  is  clearly demonstrated in the FT-IR and Raman spectra that  the vibrations of  all  functional
groups including COOH group, phenyl ring, trans isomer of double bond, CH2 and CH3 groups, and ether bonds in 4-
ethoxy-cinnamic  acid  were  observed.  The  MASS  results  indicated  that  4-ethoxy-cinnamic  acid  underwent  the
fragmentation  route  via  the  elimination  of  C2H4  of  ethoxy  group  forming  4-hydroxy-cinnamic  acid  ions.
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